
ER Model & Relational Model

ER Model (Entity Relationship Model)
▪ ER model stands for an Entity-Relationship model. It is a high-level data

model. This model is used to define the data elements and relationship
for a specified system.

▪ It develops a conceptual design for the database. It also develops a very
simple and easy to design view of data.

▪ In ER modeling, the database structure is portrayed as a diagram called an
entity-relationship diagram.

▪ ER Diagram graphically expresses the logical structure of database
(schema), and it uses-
o Rectangle: Represents Entity sets.
o Ellipses: Attributes
o Diamonds: Relationship Set
o Lines: They link attributes to Entity Sets and Entity sets to

Relationship Set
o Double Ellipses: Multivalued Attributes
o Dashed Ellipses: Derived Attributes
o Double Rectangles: Weak Entity Sets
o Double Lines: Total participation of an entity in a relationship set

ER Model (Entity Relationship Model)
▪ ER model stands for an Entity-Relationship model.
▪ It is a high-level data model. This model is used to define the data

elements and relationship for a specified system.
▪ It develops a conceptual design for the database.
▪ It also develops a very simple and easy to design view of data.
▪ In ER modeling, the database structure is portrayed as a diagram called

an entity-relationship diagram.

For example:
Suppose we design a school database. In this database, the student will
be an entity with attributes like address, name, id, age, etc. The address
can be another entity with attributes like city, street name, pin code, etc
and there will be a relationship between them.

ER Model (Entity Relationship Model)
A simple ER Diagram:
▪ In the following diagram we have two entities Student and College and

their relationship.
▪ The relationship between Student and College is many to one as a college

can have many students however a student cannot study in multiple
colleges at the same time.

▪ Student entity has attributes such as Stu_Id, Stu_Name & Stu_Addr and
College entity has attributes such as Col_ID & Col_Name.

ER Model (Entity Relationship Model)
Entity:
▪ An entity may be any object, class, person or place. In the ER diagram, an

entity can be represented as rectangles.
▪ An Entity may be an object with a physical existence – a particular

person, car, house, or employee – or it may be an object with a
conceptual existence – a company, a job, or a university course.

▪ An Entity is an object of Entity Type and set of all entities is called as
entity set. e.g.; E1 is an entity having Entity Type Student and set of all
students is called Entity Set.

▪ Consider an organization as an example manager, product, employee,
department etc. can be taken as an entity.

ER Model (Entity Relationship Model)
Strong Entity
A strong entity is not dependent of any other entity in the schema. A strong
entity will always have a primary key.
Strong entities are represented by a single rectangle.
The relationship of two strong entities is represented by a single diamond.
Various strong entities, when combined together, create a strong entity set.

Weak Entity
A weak entity is dependent on a strong entity to ensure the its existence.
Unlike a strong entity, a weak entity does not have any primary key.
It instead has a partial discriminator key. A weak entity is represented by a
double rectangle. The relation between one strong and one weak entity is
represented by a double diamond.

ER Model (Entity Relationship Model)

A bank loan installment cannot be uniquely identified without knowing the
loan to which the installment belongs, so loan installment is a weak entity.

ER Model (Entity Relationship Model)
Attribute
Attributes are the properties which define the entity type. For example,
RollNo, Name, DOB, Age, Address, MobileNo are the attributes which
defines entity type Student. In ER diagram, attribute is represented by an
oval.

There exists a domain or range of values that can be assigned to attributes.
For example, a student's name cannot be a numeric value. It has to be
alphabetic. A student's age cannot be negative, etc.

Types of Attributes
1. Simple attribute
2. Composite attribute
3. Derived attribute
4. Single-value attribute
5. Multi-value attribute

ER Model (Entity Relationship Model)
▪ Key Attribute:

The attribute which uniquely identifies each entity in the entity set is
called key attribute. For example, RollNo will be unique for each student.
In ER diagram, key attribute is represented by an oval with underlying
lines.

▪ Simple attribute: Simple attributes are atomic values, which cannot be
divided further. For example, In the diagram, RollNo & Age are the
Simple Attributes.

ER Model (Entity Relationship Model)
▪ Composite Attribute:

An attribute composed of many other attribute is called as composite
attribute. For example, Address attribute of student Entity type consists
of Street, City, State, and Country.
In ER diagram, composite attribute is represented by an oval comprising
of ovals. For example, a student's complete name may have first_name
and last_name.

ER Model (Entity Relationship Model)
▪ Derived attribute: Derived attributes are the attributes that do not exist

in the physical database, but their values are derived from other
attributes present in the database.
For example, Age (can be derived from DOB). In ER diagram, derived
attribute is represented by dashed oval.

▪ Single-value attribute: Single-value attributes contain single value.
For example − Roll Number

▪ Multi-value attribute: Multi-value attributes may contain more than one
values. For example, a person can have more than one phone number,
email_address, etc.

ER Model (Entity Relationship Model)
The complete entity type Student with its attributes can be represented
as:

Relationship Type and Relationship Set
A relationship type represents the association between entity types. For
example, ‘Enrolled in’ is a relationship type that exists between entity type
Student and Course. In ER diagram, relationship type is represented by a
diamond and connecting the entities with lines.

ER Model (Entity Relationship Model)

A set of relationships of same type is known as relationship set. The
following relationship set depicts S1 is enrolled in C2, S2 is enrolled in C1
and S3 is enrolled in C3.

Degree of a relationship set
The number of different entity sets participating in a relationship set is
called as degree of a relationship set.
Unary Relationship
When there is only ONE entity set participating in a relation, the
relationship is called as unary relationship. For example, one person is
married to only one person.

ER Model (Entity Relationship Model)

Binary Relationship
When there are TWO entities set participating in a relation, the relationship
is called as binary relationship. For example, Student is enrolled in Course.

n-ary Relationship –
When there are n entities set participating in a relation, the relationship is called as n-
ary relationship.

ER Model (Entity Relationship Model)

Cardinality
The number of times an entity of an entity set participates in a
relationship set is known as cardinality. Cardinality can be of different
types:

One to one – When each entity in each entity set can take part only once in
the relationship, the cardinality is one to one. Let us assume that a male can
marry to one female and a female can marry to one male. So the
relationship will be one to one.

ER Model (Entity Relationship Model)

Many to one – When entities in one entity set can take part only once in
the relationship set and entities in other entity set can take part more than
once in the relationship set, cardinality is many to one.
Let us assume that a student can take only one course but one course can
be taken by many students. So the cardinality will be n to 1. It means that for
one course there can be n students but for one student, there will be only
one course.
In this case, each student is taking only 1 course but 1 course has been
taken by many students.

ER Model (Entity Relationship Model)

Many to many – When entities in all entity sets can take part more than
once in the relationship cardinality is many to many. Let us assume that a
student can take more than one course and one course can be taken by
many students. So the relationship will be many to many.
In this example, student S1 is enrolled in C1 and C3 and Course C3 is
enrolled by S1, S3 and S4. So it is many to many relationships.

ER Model (Entity Relationship Model)

Participation Constraint
Participation Constraint is applied on the entity participating in the
relationship set.
1. Total Participation – Each entity in the entity set must participate in the

relationship. If each student must enroll in a course, the participation of
student will be total. Total participation is shown by double line in ER
diagram.

2. Partial Participation – The entity in the entity set may or may NOT
participate in the relationship. If some courses are not enrolled by any of
the student, the participation of course will be partial. The diagram
depicts the ‘Enrolled in’ relationship set with Student Entity set having
total participation and Course Entity set having partial participation.

ER Model (Entity Relationship Model)

Every student in Student Entity set
is participating in relationship but
there exists a course C4 which is not
taking part in the relationship.

Notation of ER diagram
Database can be represented using the notations. In ER diagram, many
notations are used to express the cardinality. These notations are as follows:

ER Model (Entity Relationship Model)

Generalization
Generalization is like a bottom-up approach in which two or more entities of
lower level combine to form a higher level entity if they have some
attributes in common.
In generalization, an entity of a higher level can also combine with the
entities of the lower level to form a further higher level entity.

Generalization is more like subclass and super class system, but the only
difference is the approach. Generalization uses the bottom-up approach.

In generalization, entities are combined to form a more generalized entity,
i.e., subclasses are combined to make a super class.

ER Model (Entity Relationship Model)

Specialization
Specialization is a top-down approach, and it is opposite to Generalization.
In specialization, one higher level entity can be broken down into two lower
level entities.

Specialization is used to identify the subset of an entity set that shares some
distinguishing characteristics.

Normally, the super class is defined first, the subclass and its related
attributes are defined next, and relationship set are then added.

ER Model (Entity Relationship Model)

ER Model (Entity Relationship Model)
Aggregation
In aggregation, the relation between two entities is treated as a single
entity. In aggregation, relationship with its corresponding entities is
aggregated into a higher level entity.

For example: Center entity offers the Course entity act as a single entity in
the relationship which is in a relationship with another entity visitor. In the
real world, if a visitor visits a coaching center then he will never enquiry
about the Course only or just about the Center instead he will ask the
enquiry about both.

Steps to Create an ERD
Following are the steps to create an ERD.

Let's study them with an example:
In a university, a Student enrolls in Courses. A student must be assigned to
at least one or more Courses. Each course is taught by a single Professor. To
maintain instruction quality, a Professor can deliver only one course

Step 1) Entity Identification
We have three entities

1. Student
2. Course
3. Professor

Step 2) Relationship Identification
We have the following two relationships

1. The student is assigned a course
2. Professor delivers a course

Steps to Create an ERD
Step 3) Cardinality Identification
For them problem statement we know that,

1. A student can be assigned multiple courses
2. A Professor can deliver only one course

Step 4) Identify Attributes
You need to study the files, forms, reports, data currently maintained by
the organization to identify attributes. You can also conduct interviews
with various stakeholders to identify entities. Initially, it's important to
identify the attributes without mapping them to a particular entity.

Once, you have a list of Attributes, you need to map them to the identified
entities. Ensure an attribute is to be paired with exactly one entity. If you
think an attribute should belong to more than one entity, use a modifier to
make it unique.

Once the mapping is done, identify the primary Keys. If a unique key is not
readily available, create one.

Entity Primary Key Attribute

Student Student_ID StudentName

Professo
r

Employee_ID ProfessorNam
e

Course Course_ID CourseName

Steps to Create an ERD

For Course Entity, attributes could be Duration, Credits, Assignments, etc.
For the sake of ease we have considered just one attribute.

Steps to Create an ERD
Step 5) Create the ERD
A more modern representation of ERD Diagram

Best Practices for Developing Effective ER Diagrams
1. Eliminate any redundant entities or relationships
2. You need to make sure that all your entities and relationships are

properly labeled
3. There may be various valid approaches to an ER diagram. You need to

make sure that the ER diagram supports all the data you need to store
4. Never connect relationships to each other

Car-Insurance Company
Construct an E-R diagram for a car-insurance company whose customers
own one or more cars each. Each car has associated with it zero to any
number of recorded accidents.

Hospital Record Management System
Construct an E-R diagram for a hospital with a set of patients and a set of
medical doctors. Associate with each patient a log of the various tests and
examinations conducted.

University Registrar Office
A university registrar’s office maintains data about the following entities:

(a) courses, including number, title, credits, syllabus, and prerequisites;

(b) course offerings, including course number, year, semester, section

number, instructor(s), timings, and classroom;

(c) students, including student-id, name, and program; and

(d) instructors, including identification number, name, department, and

title. Further, the enrollment of students in courses and grades awarded

to students in each course they are enrolled for must be appropriately

modeled.

Construct an E-R diagram for the registrar’s office. Document all

assumptions that

you make about the mapping constraints.

University Registrar Office

Consider a database used to record the marks that students get in
different exams of different course offerings.

1. Construct an E-R diagram that models exams as entities, and uses a
ternary relationship, for the above database.

Model Examination System

2. Construct an alternative E-R diagram that uses only a binary
relationship between students and course-offerings. Make sure that
only one relationship exists between a particular student and course-
offering pair, yet you can represent the marks that a student gets in
different exams of a course offering

Model Examination System

3. Design an E-R diagram for keeping track of the exploits of your favorite
sports team. You should store the matches played, the scores in each
match, the players in each match and individual player statistics for
each match. Summary statistics should be modeled as derived
attributes. Extend the E-R diagram of the previous question to track
the same information for all teams in a league.

Model Examination System

The Music Database
The music database stores details of a personal music library, and could be
used to manage your MP3, CD, or vinyl collection. Because this database is for
a personal collection, it’s relatively simple and stores only the relationships
between artists, albums, and tracks. It ignores the requirements of many
music genres, making it most useful for storing popular music and less useful
for storing jazz or classical music.
We first draw up a clear list of requirements for our database:
▪ The collection consists of albums.
▪ An album is made by exactly one artist.
▪ An artist makes one or more albums.
▪ An album contains one or more tracks
▪ Artists, albums, and tracks each have a name.
▪ Each track is on exactly one album.
▪ Each track has a time length, measured in seconds.
▪ When a track is played, the date and time the playback began (to the

nearest second) should be recorded; this is used for reporting when a
track was last played, as well as the number of times music by an artist,
from an album, or a track has been played.

Music Database

There’s no requirement to capture composers, group members or sidemen,
recording date or location, the source media, or any other details of artists,
albums, or tracks.
The ER diagram derived from our requirements is shown in Figure.

You’ll notice that it consists of only one-to-many relationships:
▪ one artist can make many albums,
▪ one album can contain many tracks, and
▪ one track can be played many times.

Conversely, each play is associated with one track, a track is on one album,
and an album is by one artist. The attributes are straightforward: artists,
albums, and tracks have names, as well as identifiers to uniquely identify
each entity. The track entity has a time attribute to store the duration, and
the played entity has a timestamp to store when the track was played.

Music Database

Music Database

The University Database
The university database stores details about university students, courses, the
semester a student took a particular course (and his mark and grade if he
completed it), and what degree program each student is enrolled in. The
database is a long way from one that’d be suitable for a large tertiary
institution, but it does illustrate relationships that are interesting to query,
and it’s easy to relate to when you’re learning SQL. We explain the
requirements next and discuss their shortcomings at the end of this section.
Consider the following requirements list:
▪ The university offers one or more programs.
▪ A program is made up of one or more courses.
▪ A student must enroll in a program.
▪ A student takes the courses that are part of her program.
▪ A program has a name, a program identifier, the total credit points

required to graduate, and the year it commenced.
▪ A course has a name, a course identifier, a credit point value, and the year

it commenced.

University Database

▪ A course has a name, a course identifier, a credit point value, and the year
it commenced.

▪ Students have one or more given names, a surname, a student identifier, a
date of birth, and the year they first enrolled. We can treat all given names
as a single object—for example, “John Paul.”

▪ When a student takes a course, the year and semester he attempted it are
recorded. When he finishes the course, a grade (such as A or B) and a
mark (such as 60 percent) are recorded.

▪ Each course in a program is sequenced into a year (for example, year 1)
and a semester (for example, semester 1).

▪ The ER diagram derived from our requirements is shown in Figure.
Although it is compact, the diagram uses some advanced features,
including relationships that have attributes and two many-to-many
relationships.

University Database

University Database

University Database
In our design:
▪ Student is a strong entity, with an identifier, student_id, created to be the

primary key used to distinguish between students (remember, we could
have several students with the same name).

▪ Program is a strong entity, with the identifier program_id as the primary
key used to distinguish between programs.

▪ Each student must be enrolled in a program, so the Student entity
participates totally in the many-to-one Enrolls In relationship
with Program. A program can exist without having any enrolled students,
so it participates partially in this relationship.

▪ A Course has meaning only in the context of a Program, so it’s a weak
entity, with course_id as a weak key. This means that a Course is uniquely
identified using its course_id and the program_id of its owning program.

▪ As a weak entity, Course participates totally in the many-to-one
identifying relationship with its owning Program. This relationship
has Year and Semester attributes that identify its sequence position.

▪ Student and Course are related through the many-to-
many Attempts relationships; a course can exist without a student, and a
student can be enrolled without attempting any courses, so the
participation is not total.

▪ When a student attempts a course, there are attributes to capture
the Year and Semester, and the Mark and Grade.

Flight Database
The Flight Database
▪ The flight database stores details about an airline’s fleet, flights, and seat

bookings. Again, it’s a hugely simplified version of what a real airline
would use, but the principles are the same.

▪ Consider the following requirements list:
▪ The airline has one or more airplanes.
▪ An airplane has a model number, a unique registration number, and the

capacity to take one or more passengers.
▪ An airplane flight has a unique flight number, a departure airport, a

destination airport, a departure date and time, and an arrival date and
time.

▪ Each flight is carried out by a single airplane.
▪ A passenger has given names, a surname, and a unique email address.
▪ A passenger can book a seat on a flight.
The ER diagram derived from our requirements is shown in Figure:

Flight Database

▪ An Airplane is uniquely identified by its RegistrationNumber, so we use
this as the primary key.

▪ A Flight is uniquely identified by its FlightNumber, so we use the flight
number as the primary key. The departure and destination airports are
captured in the From and To attributes, and we have separate attributes
for the departure and arrival date and time.

▪ Because no two passengers will share an email address, we can use
the EmailAddress as the primary key for the Passenger entity.

▪ An airplane can be involved in any number of flights, while each flight
uses exactly one airplane, so the Flies relationship between
the Airplane and Flight relationships has cardinality 1:N; because a flight
cannot exist without an airplane, the Flight entity participates totally in
this relationship.

▪ A passenger can book any number of flights, while a flight can be booked
by any number of passengers.

▪ We could specify an M:N Books relationship between
the Passenger and Flight relationship, but considering the issue more
carefully shows that there is a hidden entity here: the booking itself.

▪ We capture this by creating the intermediate entity Booking and 1:N
relationships between it and the Passenger and Flight entities. Identifying
such entities allows us to get a better picture of the requirements.

Flight Database

Relational Data Model
Relational Data Model uses a collection of tables to represent both data and
the relationship among those data.
1) Each table has multiple columns and each column as unique name.
2) The Data is arranged in a Relation which is visually represented in a two

dimensional table.
3) The data is inserted into the table in the form of Tuples (Rows).A Tuple is

formed by one or more than one attributes. Tuple in this example is a
row (complete row).

4) Attributes are used as basic building block in the formation of various
expression that are used to drive a meaningful information.

5) There can be number of tuples in the table (relation), but all the tuples
contains fixed and some attributes with varying values.

6) A Relation is represented by a table.

Relational Data Model
Tuple is represented by row.
An attribute is represented by a column of the table. Attribute name is the
name of the column

Example S_ID, S_Name, S_Age.

Attribute values contains the values for the column in the row.

Codd’s Rules
Codd’s Rules, formulated by Dr. Edgar F. Codd, define the criteria that a

database management system (DBMS) must satisfy to be considered a

relational database management system (RDBMS). These 12 rules (actually

13, as Rule 0 is included) ensure data integrity, consistency, and efficient

handling of relational data.

Codd’s 12 Rules for RDBMS

Rule 0: Foundation Rule

• The system must manage databases entirely through its relational

capabilities.

Rule 1: Information Rule

• All information in the database must be stored in tables as values in rows

and columns.

Rule 2: Guaranteed Access Rule

• Every data item should be uniquely accessible using a combination of

table name, primary key, and column name.

Codd’s Rules

Rule 3: Systematic Treatment of NULL Values

• NULL values should be distinctly stored and treated differently from

other values (not confused with zero or empty string).

Rule 4: Dynamic Online Catalog Based on the Relational Model

• The database metadata (schema, tables, etc.) must be stored in relational

tables and accessible using SQL queries.

Rule 5: Comprehensive Data Sublanguage Rule

• The system must support at least one relational language (like SQL) for

data definition, manipulation, and transaction control.

Rule 6: View Updating Rule

• The database must allow updates to views (virtual tables) as if they were

real tables, whenever possible.

Rule 7: High-Level Insert, Update, and Delete

• The system must support set-based operations, allowing manipulation of

multiple rows in a single operation.

Codd’s Rules
Rule 8: Physical Data Independence

• Changes in physical storage should not affect how data is accessed by

users or applications.

Rule 9: Logical Data Independence

• Changes in table structure (schema modifications) should not require

application modifications.

Rule 10: Integrity Independence

• Integrity constraints (like primary keys, foreign keys, and domain

constraints) should be stored in the database and not in application

code.

Rule 11: Distribution Independence

• The system should allow distributed databases without requiring

changes to applications.

Rule 12: Nonsubversion Rule

• If the system provides a low-level access method, it must not bypass the

relational security and integrity constraints.

Constraint - Set of rules and limitations:
Constraints are applied to tables and forms the logical schema.
▪ To select a particular row/tuple from table/relation we use

attribute/columns name with the help of unique value field of an
attributes.

▪ This field which are unique from other fields are used as indexes which
helps in searching fast.

▪ All the relational algebra operations, like Select, Intersection, Product,
union, join, Division, Merge can also be performed on the relation data
model.

▪ Operations on RDM (Relational Data Model) are facilitated with the help
of different conditional expression, various key attributes, and
predefined constraints etc.

▪ Data Integrity is maintained by process like Normalization.
▪ Description of data in terms of this model is called a schema.

Schema for relation specifies its name , name of each field.
Student(S_id: Integer, S_Name: String, S_Login : String etc)

Relational Data Model

Relational Data Model

Relational Model Concepts
▪ Attribute: Each column in a Table. Attributes are the properties which

define a relation. e.g., Student, Rollno, NAME etc.
▪ Tables – In the Relational model the, relations are saved in the table

format. It is stored along with its entities. A table has two properties
rows and columns. Rows represent records and columns represent
attributes.

▪ Tuple – It is nothing but a single row of a table, which contains a single
record.

▪ Relation Schema: A relation schema represents the name of the relation
with its attributes.

▪ Degree: The total number of attributes which in the relation is called the
degree of the relation.

▪ Cardinality: Total number of rows present in the Table.
▪ Column: The column represents the set of values for a specific attribute.
▪ Relation instance – Relation instance is a finite set of tuples in the

RDBMS system. Relation instances never have duplicate tuples.
▪ Relation key - Every row has one, two or multiple attributes, which is

called relation key.
▪ Attribute domain – Every attribute has some pre-defined value and

scope which is known as attribute domain.

Relational Data Model

Relational Data Model

NAME ROLL_NO PHONE_NO ADDRESS AGE

Ram 14795 7305758992 Noida 24

Shyam 12839 9026288936 Delhi 35

Laxman 33289 8583287182 Gurugram 20

Mahesh 27857 7086819134 Ghaziabad 27

Ganesh 17282 9028 913988 Delhi 40

Example: STUDENT Relation
▪ In the given table, NAME, ROLL_NO, PHONE_NO, ADDRESS, and AGE

are the attributes.
▪ The instance of schema STUDENT has 5 tuples.
▪ t3 = <Laxman, 33289, 8583287182, Gurugram, 20>.

Properties of Relations

▪ Name of the relation is distinct from all other relations.

▪ Each relation cell contains exactly one atomic (single) value

▪ Each attribute contains a distinct name

▪ Attribute domain has no significance

▪ tuple has no duplicate value

▪ Order of tuple can have a different sequence

Relational Data Model

Schema, Subschema and Instance
Schema
• Schema is a the logical description of the database.
• The overall design of the database is called Database Schema.
• In database terms, a schema (pronounced “skee-muh” or “skee-mah”) is

the organization and structure of a database.
Both schemas and schemata can be used as plural forms.

• A schema contains schema objects, which could be tables, columns, data
types, views, stored procedures, relationships, primary keys, foreign keys,
etc.

• A database schema can be represented in a visual diagram, which shows
the database objects and their relationship with each other.

Schema and Database are the same things or different?
Part of the reason for the confusion is that database systems tend to
approach schemas in their own way.
▪ MySQL Documentation

A schema is synonymous with a database. Therefore, a schema and a
database are the same thing.

▪ Oracle Database Documentation
Certain objects can be stored inside a database but not inside a schema.
Therefore, a schema and a database are two different things.

▪ SQL Server Technical Article
A schema is a separate entity inside the database. So, they are two
different things.

Schema, Subschema and Instance

Schema
Schema is a the logical description of the database.
The overall design of the database is called Database Schema.
Database system has several schemas and partitioned according to the levels
of abstractions. There are three level of schemas in database system.

1. Internal Schema or Physical Schema
It describes that how data are actually stored in the blocks of storage
devices such as hard disk.

2. Logical Schema or Conceptual Schema
It describes the structure of the database to the database designer.
Programmers and database administrators work at this level, at this level
data can be described as certain types of data records gets stored in data
structures

3. External Schema or Subschema
It is a subset of main schema having the same properties as schema. It
describes the different parts, sets, records and data names of the
database to the end users. It allows users to view only the parts of the
main database.

Schema, Subschema and Instance

Schema, Subschema and Instance

Database Instance
The data stored in database at a particular moment of time is called
instance of database. Database schema defines the variable declarations in
tables that belong to a particular database; the value of these variables at a
moment of time is called the instance of that database.

A database schema is variable declarations in a program. Variable has
particular value at a given instant. Then, the value of variable at particular
instant is called database instance.

Schema, Subschema and Instance

Relational Integrity constraints in DBMS are referred to conditions which
must be present for a valid relation. These Relational constraints in DBMS
are derived from the rules in the mini-world that the database represents.

Integrity = (Correctness + Consistency)

There are many types of Integrity Constraints in DBMS. Constraints on the
Relational database management system is mostly divided into three main
categories are:
1. Domain Constraints
2. Key Constraints
3. Referential Integrity Constraints

Relational Integrity Constraints

Domain Constraints
Domain constraints can be violated if an attribute value is not appearing in
the corresponding domain or it is not of the appropriate data type.

Domain constraints specify that within each tuple, and the value of each
attribute must be unique. This is specified as data types which include
standard data types integers, real numbers, characters, Booleans, variable
length strings, etc.

Example:
Create DOMAIN CustomerName CHECK (value not NULL)

The example shown demonstrates creating a domain constraint such that
CustomerName is not NULL

If a constrains AGE>0 is applied on STUDENT relation, inserting negative
value of AGE will result in failure.

Relational Integrity Constraints

Relational Integrity Constraints

Constraint
Type

Code Snippet Explanation

NOT NULL
CREATE TABLE Employees (
name VARCHAR(50) NOT NULL
);

Ensures that the name column
cannot have NULL values,
enforcing that every employee
must have a name.

CHECK

CREATE TABLE Employees (
age INT CHECK (age >= 18 AND
age <= 65)
);

Ensures that the age column values
must be between 18 and 65,
enforcing that employees fall
within this age range.

DEFAULT
CREATE TABLE Employees (
hire_date DATE DEFAULT
CURRENT_DATE);

Ensures that the hire_date column
will default to the current date if no
value is provided during insertion.

UNIQUE
CREATE TABLE Employees (
email VARCHAR(100) UNIQUE
);

Ensures that the email column
values must be unique across all
rows, preventing duplicate

CREATE TABLE Employees
(id INT PRIMARY KEY,

name VARCHAR(50) NOT NULL,
age INT CHECK (age >= 18 AND age <= 65),
email VARCHAR(100) UNIQUE,
hire_date DATE DEFAULT CURRENT_DATE

);

This ensures domain integrity in our SQL Server by validating that all the
values of the table are the ones we would expect:
• Every employee has a name.
• Employees are of a working age.
• Each employee has their own unique email.
• All hire dates are valid, and have a default just in case.

Relational Integrity Constraints

Key Constraints
There must be at least one minimal subset of attributes in the relation,
which can identify a tuple uniquely. This minimal subset of attributes is
called key for that relation. If there are more than one such minimal
subsets, these are called candidate keys.

Every relation in the database should have at least one set of attributes
which defines a tuple uniquely. Those set of attributes is called key. e.g.;
ROLL_NO in STUDENT is a key. No two students can have same roll
number.

Key constraints force that −
▪ In a relation with a key attribute, no two tuples can have identical values

for key attributes.
▪ A key attribute can not have NULL values.
▪ Key constraints are also referred to as Entity Constraints.

Relational Integrity Constraints

Key plays an important role in relational database; it is used for identifying
unique rows from table. It also establishes relationship among tables.
Types of keys in DBMS
1. Primary Key – A primary is a column or set of columns in a table that

uniquely identifies tuples (rows) in that table.
2. Super Key – A super key is a set of one of more columns (attributes) to

uniquely identify rows in a table.
3. Candidate Key – A super key with no redundant attribute is known as

candidate key
4. Alternate Key – Out of all candidate keys, only one gets selected as

primary key, remaining keys are known as alternate or secondary keys.
5. Composite Key – A key that consists of more than one attribute to

uniquely identify rows (also known as records & tuples) in a table is
called composite key.

6. Foreign Key – Foreign keys are the columns of a table that points to the
primary key of another table. They act as a cross-reference between
tables.

Relational Integrity Constraints

Primary Key
A primary key is a minimal set of attributes
(columns) in a table that uniquely identifies
tuples (rows) in that table.

Primary Key Example in DBMS
Lets take an example to understand the concept of primary key. In the
following table, there are three attributes: Stu_ID, Stu_Name & Stu_Age.
Out of these three attributes, one attribute or a set of more than one
attributes can be a primary key.
1. Attribute Stu_Name alone cannot be a primary key as more than one

students can have same name.
2. Attribute Stu_Age alone cannot be a primary key as more than one

students can have same age.
3. Attribute Stu_Id alone is a primary key as each student has a unique id

that can identify the student record in the table.
Note: In some cases an attribute alone cannot uniquely identify a record in
a table, in that case we try to find a set of attributes that can uniquely
identify a row in table. We will see the example of it after this example.

Relational Integrity Constraints

Stu_Id Stu_Name Stu_Age

101 Steve 23

102 John 24

103 Robert 28

104 Steve 29

105 Carl 29

Definition of Super Key in DBMS: A super key is a set of one or more
attributes (columns), which can uniquely identify a row in a table.
Often DBMS beginners get confused between super key and candidate key,
so we will also discuss candidate key and its relation with super key in this
article.

Candidate Key Vs Super Key
Candidate keys are selected from the set of super keys, the only thing we
take care while selecting candidate key is: It should not have any redundant
attribute. That’s the reason they are also termed as minimal super key.

Table: Employee
Super Keys: The above table has following super keys. All of the following
sets of super key are able to uniquely identify a row of the employee table.
{Emp_SSN}
{Emp_Number}
{Emp_SSN, Emp_Number}
{Emp_SSN, Emp_Name}
{Emp_SSN, Emp_Number, Emp_Name}
{Emp_Number, Emp_Name}

Relational Integrity Constraints

Candidate Keys: As I mentioned in the beginning, a candidate key is a
minimal super key with no redundant attributes. The following two set of
super keys are chosen from the above sets as there are no redundant
attributes in these sets.
{Emp_SSN}
{Emp_Number}
Only these two sets are candidate keys as all other sets are having
redundant attributes that are not necessary for unique identification.
Primary key
A Primary key is selected from a set of candidate keys. This is done by
database admin or database designer.
We can say that either {Emp_SSN} or {Emp_Number} can be chosen as a
primary key for the table Employee.
Alternate Key
As we have seen in the candidate key guide that a table can have multiple
candidate keys. Among these candidate keys, only one key gets selected
as primary key, the remaining keys are known as alternative or secondary
keys.

Since we have selected Emp_SSN as primary key, the remaining
key Emp_Number would be called alternative or secondary key.

Relational Integrity Constraints

Definition of Composite key: A key that has more than one attributes is
known as composite key. It is also known as compound key.

Note: Any key such as super key, primary key, candidate key etc. can be
called composite key if it has more than one attributes.

Composite key Example
All of the following sets of super key are able to uniquely identify a row of
the employee table.

{Emp_SSN}
{Emp_Number}
{Emp_SSN, Emp_Number}
{Emp_SSN, Emp_Name}
{Emp_SSN, Emp_Number, Emp_Name}
{Emp_Number, Emp_Name}

Out of the above given keys, the following are the composite keys.
{Emp_SSN, Emp_Number}
{Emp_SSN, Emp_Name}
{Emp_SSN, Emp_Number, Emp_Name}
{Emp_Number, Emp_Name}

As all the keys are made up of more than one attributes.

Relational Integrity Constraints

Definition: Foreign keys are the columns of a table that points to
the primary key of another table. They act as a cross-reference between
tables.

Referential integrity Constraints
Referential integrity constraints work on the concept of Foreign Keys. A
foreign key is a key attribute of a relation that can be referred in other
relation.

Referential integrity constraint states that if a relation refers to a key
attribute of a different or same relation, then that key element must exist.

Referential Integrity Constraints

Referential Integrity Constraints

ROLL_NO NAME ADDRESS PHONE AGE BRANCH_CODE

1 RAM DELHI 9455123451 18 CSE

2 RAMESH GURGAON 9652431543 18 CSE

3 SUJIT ROHTAK 9156253131 20 ECE

4 SURESH DELHI 9136263161 18 IT

BRANCH_CODE BRANCH_NAME

CSE COMPUTER SCIENCE & ENGINEERING

IT INFORMATION TECHNOLOGY

ECE ELECTRONICS AND COMMUNICATION ENGINEERING

CE CIVIL ENGINEERING

When one attribute of a relation can only take values from other attribute
of same relation or any other relation, it is called referential integrity. Let us
suppose we have 2 relations

BRANCH_CODE of STUDENT can only take the values which are present in
BRANCH_CODE of BRANCH which is called referential integrity
constraint. The relation which is referencing to other relation is called
REFERENCING RELATION (STUDENT in this case) and the relation to
which other relations refer is called REFERENCED RELATION (BRANCH in
this case).

Student

Branch

Referential Integrity Constraints
An anomaly is an irregularity, or something which deviates from the
expected or normal state. When designing databases, we identify three
types of anomalies: Insert, Update and Delete.

Insertion Anomaly in Referencing Relation:
We can’t insert a row in REFERENCING RELATION if referencing
attribute’s value is not present in referenced attribute value. e.g.; Insertion
of a student with BRANCH_CODE ‘ME’ in STUDENT relation will result in
error because ‘ME’ is not present in BRANCH_CODE of BRANCH.

Deletion/Updation Anomaly in Referenced Relation:
We can’t delete or update a row from REFERENCED RELATION if value of
REFRENCED ATTRIBUTE is used in value of REFERENCING ATTRIBUTE. e.
g.; if we try to delete tuple from BRANCH having BRANCH_CODE ‘CS’, it
will result in error because ‘CS’ is referenced by BRANCH_CODE of
STUDENT, but if we try to delete the row from BRANCH with
BRANCH_CODE CV, it will be deleted as the value is not been used by
referencing relation. It can be handled by following method:

Referential Integrity Constraints
ON DELETE CASCADE: It will delete the tuples from REFERENCING
RELATION if value used by REFERENCING ATTRIBUTE is deleted from
REFERENCED RELATION. e.g.;, if we delete a row from BRANCH with
BRANCH_CODE ‘CS’, the rows in STUDENT relation with BRANCH_CODE
CS (ROLL_NO 1 and 2 in this case) will be deleted.

ON UPDATE CASCADE: It will update the REFERENCING ATTRIBUTE in
REFERENCING RELATION if attribute value used by REFERENCING
ATTRIBUTE is updated in REFERENCED RELATION. e.g.;, if we update a
row from BRANCH with BRANCH_CODE ‘CS’ to ‘CSE’, the rows in
STUDENT relation with BRANCH_CODE CS (ROLL_NO 1 and 2 in this case)
will be updated with BRANCH_CODE ‘CSE’.

Converting ER Diagram into Tables
 ER diagram is converted into the tables in relational model.
 This is because relational models can be easily implemented by RDBMS

like MySQL , Oracle etc.

Following rules are used for converting an ER diagram into the tables-

Rule-01: For Strong Entity Set With Only Simple Attributes-
A strong entity set with only simple attributes will require only one table in
relational model.
o Attributes of the table will be the attribute of the entity set.
o The primary key of the table will be the key attribute of the entity set.

Example:

Converting ER Diagram into Tables
Rule-02: For Strong Entity Set With Composite Attributes-

 A strong entity set with any number of composite attributes will require only

one table in relational model.

 While conversion, simple attributes of the composite attributes are taken into

account and not the composite attribute itself.

Example-

Converting ER Diagram into Tables
Rule-03: For Strong Entity Set With Multi Valued Attributes-

A strong entity set with any number of multi valued attributes will require two

tables in relational model.

 One table will contain all the simple attributes with the primary key.

 Other table will contain the primary key and all the multi valued attributes.

Example-

Converting ER Diagram into Tables
Rule-04: Translating Relationship Set into a Table-

A relationship set will require one table in the relational model.

Attributes of the table are-

 Primary key attributes of the participating entity sets

 Its own descriptive attributes if any.

Set of non-descriptive attributes will be the primary key.

Example:

NOTE-

If we consider the overall ER diagram, three

tables will be required in relational model.

1. One table for the entity set “Employee”

2. One table for the entity set “Department”

3. One table for the relationship set “Works

in”

Converting ER Diagram into Tables
Rule-05: For Binary Relationships With Cardinality Ratios-

The following four cases are possible-

Case-01: Binary relationship with cardinality ratio m:n

Case-02: Binary relationship with cardinality ratio 1:n

Case-03: Binary relationship with cardinality ratio m:1

Case-04: Binary relationship with cardinality ratio 1:1

Case-01: For Binary Relationship With Cardinality Ratio m:n

Here, three tables will be required-

1. A (a1 , a2)

2. R (a1 , b1)

3. B (b1 , b2)

Converting ER Diagram into Tables
Case-02: For Binary Relationship With Cardinality Ratio 1:n

Here, two tables will be required-

1. A (a1 , a2)

2. BR (a1 , b1 , b2)
NOTE- Here, combined table will be drawn for the entity set B and relationship set R.

Case-03: For Binary Relationship With Cardinality Ratio m:1

Here, two tables will be required-

1. AR (a1 , a2 , b1)

2. B (b1 , b2)
NOTE- Here, combined table will be drawn for the entity set A and relationship set R.

Converting ER Diagram into Tables
Case-04: For Binary Relationship With Cardinality Ratio 1:1

Here, two tables will be required. Either combine ‘R’ with ‘A’ or ‘B’

Way-01:

1. AR (a1 , a2 , b1)

2. B (b1 , b2)

Way-02:

1. A (a1 , a2)

2. BR (a1 , b1 , b2)

Converting ER Diagram into Tables
Thumb Rules to Remember

While determining the minimum number of tables required for binary

relationships with given cardinality ratios, following thumb rules must be kept in

mind-

 For binary relationship with cardinality ration m : n , separate and individual

tables will be drawn for each entity set and relationship.

 For binary relationship with cardinality ratio either m : 1 or 1 : n , always

remember “many side will consume the relationship” i.e. a combined table

will be drawn for many side entity set and relationship set.

 For binary relationship with cardinality ratio 1 : 1 , two tables will be

required. You can combine the relationship set with any one of the entity sets.

Converting ER Diagram into Tables
Rule-06: For Binary Relationship With Both Cardinality Constraints and

Participation Constraints-

 Cardinality constraints will be implemented as discussed in Rule-05.

 Because of the total participation constraint, foreign key acquires NOT

NULL constraint i.e. now foreign key can not be null.

Case-01: For Binary Relationship With Cardinality Constraint and Total

Participation Constraint From One Side-

Because cardinality ratio = 1 : n , so we will combine the entity set B and

relationship set R.

Then, two tables will be required-

1. A (a1 , a2)

2. BR (a1 , b1 , b2)

Because of total participation, foreign key a1 has acquired NOT NULL constraint,

so it can’t be null now.

Converting ER Diagram into Tables

Case-02: For Binary Relationship With Cardinality Constraint and Total

Participation Constraint From Both Sides-

If there is a key constraint from both the sides of an entity set with total participation,

then that binary relationship is represented using only single table.

Here, Only one table is required.

1. ARB (a1 , a2 , b1 , b2)

Converting ER Diagram into Tables

Rule-07: For Binary Relationship With Weak Entity Set-

Weak entity set always appears in association with identifying relationship with total

participation constraint.

Here, two tables will be required-

1. A (a1 , a2)

2. BR (a1 , b1 , b2)

